Recognizing Actions across Cameras by Exploring the Correlated Subspace
نویسندگان
چکیده
We present a novel transfer learning approach to cross-camera action recognition. Inspired by canonical correlation analysis (CCA), we first extract the spatio-temporal visual words from videos captured at different views, and derive a correlation subspace as a joint representation for different bag-of-words models at different views. Different from prior CCA-based approaches which simply train standard classifiers such as SVM in the resulting subspace, we explore the domain transfer ability of CCA in the correlation subspace, in which each dimension has a different capability in correlating source and target data. In our work, we propose a novel SVM with a correlation regularizer which incorporates such ability into the design of the SVM. Experiments on the IXMAS dataset verify the effectiveness of our method, which is shown to outperform state-of-the-art transfer learning approaches without taking such domain transfer ability into consideration.
منابع مشابه
Recognizing Unseen Actions Across Cameras by Exploring the Correlated Subspace
We present a novel transfer learning approach to cross-camera action recognition. Inspired by canonical correlation analysis (CCA), we first extract the spatio-temporal visual words from videos captured at different views, and derive a correlation subspace as a joint representation for different bag-of-words models at different views. Different from prior CCA-based approaches which simply train...
متن کاملAction Recognition in the Presence of One Egocentric and Multiple Static Cameras
In this paper, we study the problem of recognizing human actions in the presence of a single egocentric camera and multiple static cameras. Some actions are better presented in static cameras, where the whole body of an actor and the context of actions are visible. Some other actions are better recognized in egocentric cameras, where subtle movements of hands and complex object interactions are...
متن کاملAcoustic correlated sources direction finding in the presence of unknown spatial correlation noise
In this paper, a new method is proposed for DOA estimation of correlated acoustic signals, in the presence of unknown spatial correlation noise. By generating a matrix from the signal subspace with the Hankel-SVD method, the correlated resource information is extracted from each eigen-vector. Then a joint-diagonalization structure is constructed of the signal subspace and basis it, independent...
متن کاملExploring the Space of an Action for Human Action Recognition
One of the fundamental challenges of recognizing actions is accounting for the variability that arises when arbitrary cameras capture humans performing actions. In this paper, we explicitly identify three important sources of variability: (1) viewpoint, (2) execution rate, and (3) anthropometry of actors, and propose a model of human actions that allows us to address all three. Our hypothesis i...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کامل